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OPINION

The heat-shock response in higher plants: a biochemical
model
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Abstract. A compilation of existing data on higher
plant responses to heat-shock temperatures has been
utilized to produce a biochemically based model of
integrated cellular responses to elevated tempera-
tures. This model describes a potential mechanism
for the triggering of several biochemical responses to
a thermally induced leakage of extracellular or
vacuolar ions into the cytoplasm. It seems possible
that many of the observed heat-shock responses are
involved in the protection of (a) enzymes from
inactivation and (b) nucleic acids from cleavage
induced by the presence of elevated levels of specific
rnetals.
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Living organisms have developed several endogenous
protection systems which provide thermal tolerance.
One of these protection systems involves an acquired
heat resistance mechanism which is associated with
the synthesis and accumulation of specific proteins
(HSP). Universally these proteins have been
identified by following the incorporation of labelled
amino acids into proteins during exposure to
elevated temperatures. The heat-shock response has
been reviewed both at the protein and molecular
levels in numerous articles, reviews and books
(Baszczynski, Walden & Atkinson, 1985; Craig,
1986; Key et al, 1982, 1983, 1985; Lindquist, 1986;
Nover, 1984).

Early reports of heat-shock proteins in higher
plants demonstrated HSP in tobacco and soybean
cells grown in solution culture (Barnett et al, 1980),
and in soybean seedling tissue (Key, Lin & Chen,
1981). The HSP of soybean were demonstrated by
the appearance of 10 new bands on one-dimensional
SDS gels; with a more complex pattern on two-
dimensional gels (Key et al, 1981). When the
tissue was returned to 28 °C after 4 h at 40 "C, there
was a progressive decline in the synthesis of HSP and
a reappearance of the normal pattern of protein
synthesis by 3 to 4 h. To date, the incorporation of
radioactive precursors into plant heat-shock proteins
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has been identified in peas (Hadwiger & Wagoner,
1983; Mansfield & Key, 1987), tomato (Nover &
Scharf, 1984; Nover, Scharf & Neumann, 1983),
carrot (Pitto et al, 1983), tobacco (Meyer &
Chartier, 1983), mung bean (Chen, Kamisaka &
Masuda, 1986), barley (Belatiger, Brodl & Ho, 1986;
Mansfield & Key, 1987), Tradescantia (Xiao &
Mascarenhas, 1985), Gladiolus cormels (Ginzburg &
Salomon, 1986, Lilium longiflorum (Hong-Qi, Croes
& Linskens, 1984), soybean (Key et al, 1981;
Mansfield & Key), corn (Baszczynski, Walden &
Atkinson, 1983; Bewley, Larson & Papp, 1983;
Cooper & Ho, 1983, 1984; Mansfield & Key, 1987),
cotton (Burke et al., 1985), wheat (Key et al., 1983;
Mansfield & Key, 1987), millet (Key et al, 1983;
Mansfield & Key, 1987), sunflowers (Schoffl &
Baumann, 1985), sorghum (Ougham & Stoddart,
1986), rice and Panicum miliaeeutn (Mansfield &
Key, 1987). The optimal induction temperature for
the heat-shock response varies between species, but
generally occurs from 10 to 15°C above the
temperature empirically determined for optimal
plant growth.

Several inducers of the synthesis of all or specific
heat-shock proteins other than elevated temperatures
have been identified in both plants and animals.
These include developtnental controls (Bienz, 1984),
tnetals (Czarnecka et al, 1984), water stress
(Heikkila et al, 1984), sulphydryl reagents, calcium
ionophores, steroid hormones, ehelating agents,
pyridoxine, methylene blue, glucosamine, deoxy-
glucose, and a variety of DNA and RNA viruses
(Nover, 1984). Variability exists in the pattern of
niRNA and proteins synthesized in response to the
tnagnitude of the tetnperature shifts (Craig, 1986),
chemical inducers (Lindquist, 1986), the degree to
which 'normal' protein synthesis is inhibited (Key et
al, 1983), and the length of time that maximal HSP
synthesis occurs (Baszczynski et al, 1985). The
reported cellular localizations of specific HSP in the
nueleus (Vincent & Tanguay, 1979), tnitochondria
(Sinibaldi & Turpen, 1985; Cooper & Ho, 1987),
chloroplast (Vierling et al, 1986), endoplasmic
reticulum (Baszczynski et al, 1983; Cooper & Ho,
1987), and plasma membrane (Lim et al, 1984;
Cooper & Ho, 1987) can also vary depending upon
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the method of heat-shock protein induction
(Lindquist, 1986; Craig, 1986).

One thread common to all of the heat-shock
reviews is the inability of investigations to add
insight into the question of heat-shock protein
function. This paper presents a hypothesis of cellular
responses to thermal stress based upon the existing
literature, and suggests that some of the proteins
associated with the heat-shock response may be
associated with the protection of cellular processes
from metal inhibition or toxieity. This manuscript is
not intended to extensively review the existing
literature, but will provide an overview based upon
several aspects of tfie heat shock response in plants.
Figure 1 presents a working model of potential
cellular responses to high temperature stress.

In this model, elevation of cellular temperature
would result in a decreased efficiency of membrane
transport systems in the removal of metals and salts
from the cytoplasm. This decreased efficiency could
be related to a direct effect of temperature on the
binding efficiencies of the membrane pumps similar
to the temperature-induced Km changes of enzymes
in fish and plants (Somero & Low, 1976; Teeri &
Peet, 1978). The decline in pump efficiency at either
the plasma membrane or tonoplast membrane could
result in an alteration of ion transport activity
resulting in an elevation of salts (i.e. calcium) and
metals (e.g. aluminium, iron, copper and cadmium) in
the cytoplasm. Most, if not all, of the other stresses
reported to induce the heat-shock response would
also affect either the gradient of metals, the energy
required to drive the membrane pumps or the
transport of salts across the membrane. The leakage
of calcium across the membrane would result in the
activation of calmodulin [CAM] (Fig. 1, [1]) and,
ultimately, enzyme activities associated with
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Figure 1. Model ol" potential cellular responses to high
temperature stress. Key reactions [1 to 8] are discussed in the text.

calmodulin binding (i.e. membrane ATPases (Fig. 1,
[2]), kinases, and phospholipase D (Fig. 1, [3])). The
potential activation of phospholipase D could
account for the loss of the endoplasmic reticulum's
phospholipid membrane during the initial phases of
heat-shock (Fig. 1, [4]) (Belanger et al., 1986). The
activity of the phospholipase would decline as the
calmodulin-activated membrane ATPases removed
excess ions from the cytoplasm. Calcium influx into
corn roots has previously been reported as a result of
cold shock (Zocchi & Hanson, 1982). Zocchi &
Hanson (1983) suggested that a Ca^'^/H"' exchange
functions normally to maintain very low Câ "̂
concentrations, with a Ca'̂ "^-ATPase activated only
when Câ "*" levels rise and calmodulin is activated. A
similar activation may occur in response to the heat-
shock temperatures.

Leakage of metals into cells can be extremely
toxic. Cells have evolved mechanisms to aid in
scavenging intracellular metals (Rauser, 1981).
Glutathione functions as a cellular reductant and has
been shown to be involved in removal of cellular
toxins (herbicides, metals and so on) (Cherian &
Goyer, 1978; Grill, Winnacker & Zenk, 1986). If
declining energy levels or direct temperature effects
on the kinetic constants of membrane pumps alter
the intracellular concentrations of calcium and
metals, then increased glutathione concentrations
could aid in cellular detoxification (Fig. 1, [5]). To
overcorne high-temperature-induced kinetic changes
in the enzyme responsible for .maintaining gluta-
thione in the reduced state {viz. glutathione reduct-
ase) (Mahan, Burke & Orzech, 1987), elevated levels
of glutathione would be required for the main-
tenance of glutathione reductase activity. The
increase in glutathione concentrations reported in
high temperature stressed maize (Nicto-Sotelo & Ho,
1986) is consistent with this model. The mechanism
responsible for the thermally induced increase in
glutathione content has not been identified, however,
it may require the synthesis of the enzymes y-
glutamylcysteine synthetase and glutathione
synthase. Some metals have been shown to induce
tiie synthesis of linear polymers of glutathione,
termed phytochelatins (Grill, Winnacker & Zenk,
1985). These phytochelatins function as metal-
sequestering peptides via metal-thiolate co-ordina-
tion and have been shown to be induced by a range
of metals (Grill et al., 1986). Although specific metal
transporters have not been isolated, permeability
studies by Gutknecht (1983) suggest that Cd̂ "̂
transport across membranes is protein mediated and
correlates with Cd^^, not CdClj, concentration.

Concomitant with the initial scavenging of the
metals by glutathione and phytochelatins, some of
the metals may interact with genes containing similar
sequences to the metal ion responsive elements found
upstream in metallothionein genes of animals (Fig. I,
[6]) (Serfling et al., 1985). Similar sequences have
been reported far upstream in the Gmhsp 17.5-E
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{G/ycine max heat-shock protein, 17.5 kDa) genes
(Czarnecka et al,, 1985). The degree to which the
metals would be available for HSP induction would
be related to the level of glutathione, cysteine, and
phytochelatins in the cell. This tnay explain in part
the observed changes in the induction temperature of
the heat-shock iesponse following several cycles of
heat-shock (Key et al., 1985). The reported increases
in glutathione content in response to the high
temperature stress would provide increased protect-
ion from the metals, thereby functionally removing
them from HSP induction.

T h e mechanism regulating the changes in the
specificity of ribosomes for the heat-shock niRNA is
unknown. The association of a 22 kD (P22)
cytoplasmic protein has been reported during the
transition to selective mRNA translation (McMullin
& Hallberg, 1986). The meehanism of interaction
between the P22 and the ribosome, however, remains
unknown. It is possible that the binding of the P22 to
free ribosomes is associated with metal binding
during the thermally-induced leakage of metals into
the cell or binding may be related to protein
phosphorylation by a calmodulin-activated kinase
(Fig. 1, [7]).

Finally, some of the small molecular weight HSP
may function in chelation of metals (Fig. I, [8]).
Mos t metal-chelating proteins that have been
identified are low molecular weight proteins whose
synthesis is induced by specific metals (Weigel &
Jager, 1980). The low-tnolecular-weight heat-shock
proteins have also been shown to be induced by
metals, with some specificity between the metal tested
and the appearanee of mRNA for particular low
molecular weight HSP (Czarnecka et al., 1984).
These chelating proteins eould be protected frotn
proteolysis while binding the metal and become
susceptible to proteolysis following temoval of the
metal. This hypothesis is consistent with the
observation tliat HSP do not accutnulate to
significant levels following a high-temperature treat-
ment, yet have been shown to accumulate in field-
stressed plants where elevation in leaf tetnpeiatures is
associated with tissue dehydration and water stress
(Burke et al., 1985). Water stress can result in tissue
dehydration which would increase the cellular ion
concentrations, thereby requiring their functional
removal via chelation by low molecular weight HSP
until the ions could be transported out of the cell or
until the stress was alleviated.

In sumtnary, the present authors have presented a
working model of possible responses of higher-plant
cells to elevated tetnperatures. Because of the
reported induction of heat-shock proteins by metals,
and because of the known sensitivity of enzyme
systems to temperature changes, the reported cellular
responses presented in this model cannot be
dismissed based upon the existing heat-shock
response literature. Future research on heat-shock

responses of higher plants should consider the
possibilities addressed in this research model.
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